

Frequency – Dependent on Electrical Characteristics of Er₂O₃/SiO₂/n-Si/Al MOS Capacitor deposited by E-beam

Alex MUTALE ^{1,2} & Ercan YILMAZ ^{1,2}

 ¹Nükleer Radiation Detectors Application and Research Center, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
 ²Physics Department, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey

06/07/2020, Conference Name, City

CONTENT OUTLINE

> INTRODUCTION

> EXPERIMENTAL

> RESULTS AND DISCUSSIONS

> CONCLUSION

INTRODUCTION

The Metal –oxide-semiconductor MOS capacitor can be thought of as parallel plate capacitor. The MOS capacitor has three parts as a top metal contact / dielectric material/ semiconductor. The MOS capacitor is used to energy storage device applications due to the dielectric property. In studies conducted so far the oxide layers of various types, such as HfO₂, ZrO₂, Al₂O₃, La₂O₃, Er₂O₃, TiO₂, Gd₂O₃ have been used between the metal and the semiconductor. In real MOS capacitors, the localized interface states exist at the semiconductor-insulator interface and the device behaviour is different from an ideal cases due to the presence of these localized states. Moreover, the parameters such as interface states (Nss) and series resistance(Rs) affects the electrical characteristics of MOS [1-9]. Er₂O₃ is a promising high-k layer and has pulses over SiO_2 because of a high dielectric constant(10-14) a wider bandgap (5.4eV), largely conduction band offset(3.5eV), and lower gate leakage current. The purpose of this work is to investigate the frequency dependent on the electrical characteristics of Al/Er₂O₃/SiO₂/n-Si/Al MOS capaictor deposited by e-beam evaporation technique.

• EXPERIMENTAL

Before deposition, the wafer was cleaned by following the standard RCA cleaning steps and the oxide layer was then grown on Si wafer in diffusion furnance by dry oxidation method at 1000°C. The wafer was then inserted into E-beam evaporation set up for Er_2O_3 deposition and the deposition pressure was below 5.0×10 -4 Torr and the growth rate was about 1.5 Å/s. The thickness of SiO₂ and Er₂O₃ layers were measured by using Angstrom Sun Spectroscopic reflectometer and found to be 20 nm and 130 nm, respectively. The Er₂O₃ /SiO₂ films were annealed at 550°C for 30 min, under N₂ ambient with the flow rate of 1000 sccm. The front and back contacts were produced with Aluminum (Al) by RF magnetron sputtering technique. On the other hand, the front Al electrodes were produced with aid of the shadow mask and the mask consists of 1.5 mm circular dots. As schematically shown in Fig. 1, the Al/Er₂O₃ /SiO₂ /n-Si/Al MOS capacitors were fabricated. The electrical measurements; C-V and G/ ω -V measurements were performed by using a Keithley 4200-SCS Parameter Analyzer for the voltage raised from -10 V to 10 V in the frequency range of 50 kHz to 1 MHz. All the experiments were performed at room temperature.

RCA Cleaning Process of n-Si wafer

SiO₂ growth on n-Si wafer by dry oxidation method

Er₂O₃ thin film deposition on SiO₂/n-Si by e-beam evaporation technique

Metallization Process

Figure 1. Structure of Al/(Er₂O₃/SiO₂/n-Si/Al) MOS Capacitors

RESULTS AND DISCUSSIONS

Figure 2. XRD spectra of Er_2O_3/SiO_2 thin film grown on n-Si(100) substrate

Figure 3. Measured capacitance (C_m) of Al/Er₂O₃/SiO₂/n-Si/Al MOS Capacitor for various frequency ranges from 50kHz to 1MHz

Figure 4. Measured Conductance(G_m) of Al/($Er_2O_3/SiO_2/n-Si/Al$)MOS Capacitor for various frequency ranges from 50kHz to 1MHz

Figure .5 Series resistance curves of Al/ $(Er_2O_3/SiO_2/n-Si/)$ Al MOS Capacitor for various frequency ranges from 50kHz to 1MHz

Figure.6 Corrected Capacitance(C_c) characteristics of Al/($Er_2O_3/SiO_2/n-Si/$)Al MOS capacitor for various frequency ranges from 50kHz to 1MHz

Figure.7 Corrected Conductance $(G_c/_w)$ characteristics of Al/(Er₂O₃/SiO₂/n-Si/)Al MOS Capacitor for various frequency ranges from 50kHz to 1MHz

Frequency(kHz)	<i>C_c</i> (×10 ⁻⁹ F)	$G_c/\omega(\times 10^{-11}\mathrm{F})$	$R_s(\mathbf{\Omega})$	$D_{it}(eV^{-1} cm^{-2})$	
50	1.43	3.42	900	2.46×10 ¹¹	
100	1.36	2.65	398	3.02×10 ¹¹	
200	1.30	2.59	217	4.85×10 ¹¹	
300	1.27	2.40	161	6.11×10 ¹¹	
400	1.25	2.32	130	7.42×10 ¹¹	
500	1.23	2.19	111	9.15×10 ¹¹	
600	1.21	2.17	100	1.22×10^{12}	
700	1.21	2.16	91.0	1.22×10^{12}	
800	1.20	2.16	85.0	1.44×10 ¹²	
900	1.19	2.14	77.0	1.71×10^{12}	
1000	1.19	2.13	75.0	1.71×10^{12}	

Table.1 Electrical parameters of E-beam Al(/Er₂O₃/SiO₂/n-Si)Al MOS capacitor

Figure.8 Variations of D_{it} as a function of frequency for Al/(Er₂O₃/SiO₂/n-Si)/Al MOS capacitor

Figure.9 C_c^{-2} -V characteristics and corresponding linear fit function of Al/(Er₂O₃/SiO₂/n-Si) Al MOS capacitor at various frequency ranges from 50kHz to 1MHz

Frequency(kHz)	$V_o(\mathbf{V})$	$V_D(\mathbf{eV})$	$E_F(\mathbf{eV})$	$\Delta \Phi_B(\mathbf{meV})$	$\Phi_B(\mathbf{eV})$	N _D (10¹⁵cm⁻³)	W _D (10 ⁻⁵ cm)
50	1.490	1.470	0.250	18.50	1.230	1.87	0.20
100	0.974	0.948	0.249	16.90	0.716	1.99	7.92
200	0.953	0.927	0.249	16.80	0.695	1.99	7.83
300	0.943	0.917	0.249	16.80	0.685	1.98	7.81
400	0.935	0.909	0.249	16.70	0.677	1.98	7.77
500	0.925	0.899	0.249	16.70	0.667	1.97	7.75
600	0.921	0.895	0.249	16.60	0.663	1.97	7.73
700	0.912	0.886	0.249	16.60	0.653	1.97	7.69
800	0.909	0.883	0.249	16.60	0.651	1.97	7.68
900	0.906	0.880	0.249	16.60	0.648	1.97	7.67
1000	0.904	0.878	0.249	16.60	0.646	1.97	7.66

Table.2 Electrical parameters of Al/($Er_2O_3/SiO_2/n-Si$)/Al MOS capacitor obtained from $C_c^{-2}-V$

CONCLUSION

The Al $/\text{Er}_2O_3/\text{SiO}_2/\text{n-Si}/\text{Al}$ MOS capacitor was fabricated by using E-beam technique. The electrical characteristics of the prepared MOS capacitor were investigated in detail. The C-V and G/ ω -V measurements are indicated that measured capacitance and conductance are strongly dependent on the applied voltage frquency. Furthermore, C-V and G/ ω -V characteristics of MOS capacitor have been controlled by the interfacial oxide layer, interface states and series resistance which are responsible for the non-ideal behaviour electrical characteristics.

References

[1] A.R. Wazzan, MOS (Metal oxide semiconductor) physics and technology.Nucl. Technol. 74(2), 235-237(1986).

[2] R. Lok, S. Kaya, H. Karacali, E. Yilmaz, A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors. J. Mater. Sci. Mater. Electron. 27(12), 13154–13160 (2016).
[2] I. Characteristic and the state of the state o

[3.] C.H. Kao, H. Chen, Y.T. Pan, J.S. Chiu, T.C. Lu, The characteristic of the high-k Er2O3(erbium oxide) dielectrics depositeon polycrystalline silicon. Solid State Commun. **152**(6), 504–508

(2012).

[4] . A. Aktağ, A. Mutale, and E. Yılmaz, "Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor," *J. Mater. Sci. Mater. Electron.*, vol. 31, no. 11, pp. 9044–9051, 2020.

[5]. Ç.G. Türk, S.O. Tan, S. Altındal, B. Inem, Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage. Phys. B **582**, 411979–411985 (2020).

[6] S. Alptekin, Ş. Altındal, A comparative study on current/capacitance:voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J. Mater Sci. **30**, 6491–6499 (2019).

[7]. F. Ze-Bo, Z. Yan-Yan, W. Jia-Le, J. Zui-Min, Annealing effectson the structure and electrical characteristics of amorphous Er2O3 films. Chinese Phys. B **18**(8), 3542–3546 (2009).

[8]. H.S. Kamineni et al., Optical and structural characterization of thermal oxidation effects of erbium thin films deposited by electronbeam on silicon. J. Appl. Phys. **111**(1), 013104 (2012).

[9] I. Dökme, Ş. Altindal, "On the profile of frequency and voltagedependent interface states and series resistance in MIS structures. Phys. B **393**(1–2), 328–335 (2007).

<u>Acknowledgements:</u>

This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number: 2016K12-2834.

THANK YOU FOR YOUR ATTENTION!

